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Basic equations & symmetry

Basic equations

o First-order wavefield system
acoustics, seismics, electrodynamics

(D + May) F = —w(t)Q

@ Plus initial conditions

@ Dirichlet boundary conditions

@ Signature matrix

0~ =diag(1,-1,-1,-1) (acoustics)



Basic equations & symmetry

Polynomial Krylov reduction 1

PML

Polynomial Krylov Reduction 2

Extended Krylov Reduction
(Preconditioned) rational Krylov methods

Basic equations

@ Spatial discretization
(D + Moy) f = —w(t)qg

@ Order of this system can be very large especially in 3D

@ Discretized counterpart of §~ is denoted by d—



Basic equations & symmetry

Polynomial Krylov reduction 1

PML

Polynomial Krylov Reduction 2

Extended Krylov Reduction
(Preconditioned) rational Krylov methods

Basic equations

@ Solution
f(t) = —w(t) * n(t) exp(~At)M~*q

e 7)(t) Heaviside unit step function

@ System matrix
A=M"1D



Basic equations & symmetry

Symmetry

@ System matrix A is skew-symmetric w.r.t. WM
e Evolution operator exp(—At) is orthogonal w.r.t. WM

@ Inner product and norm
(oy) = yPWhx x| = (x, )12

@ Stored field energy in the computational domain
(sum of field energies)

1
Z1Fl2
=

@ Initial-value problem: norm of f is preserved



Basic equations & symmetry

Symmetry

@ System matrix A is symmetric w.r.t. WMd~

@ Bilinear form
(x,y) =y WMmd~x

@ Free field Lagrangian
(difference of field energies)

1
§<fv f>

@ Symmetry property related to reciprocity



Basic equations & symmetry

Symmetry
@ Introduce
dP = 1(I—i— d”) and d" = 1(/ —d")
2 2
e Write f = f(q) to indicate that the field is generated by a
source q
@ Reciprocity

@ Source vector: g = dPq, receiver vector r = dPr

(f(q),r) = (q,f(r))

Source vector: g = dPq, receiver vector r = d™r

(f(q),r) = —(q,f(r))



Polynomial Krylov reduction 1

Polynomial Krylov reduction

Exploit symmetry of system matrix in a Lanczos reduction
algorithm

For lossless media both symmetry properties lead to the same
reduction algorithm

First symmetry property is lost for lossy media with a system
matrix of the form A= M~1(D + S)

Second symmetry property still holds
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Polynomial Krylov reduction 1

Polynomial Krylov reduction

@ For lossless media, FDTD can be written in a similar form as
Lanczos algorithm

recurrence relation for FDTD

recurrence relation for Fibonacci polynomials

@ Stability of FDTD and numerical dispersion can be studied
using this connection
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Polynomial Krylov reduction 1

Polynomial Krylov reduction

@ Lanczos recurrence coefficients: [3;

e Comparison with FDTD: 1//; = time step of Lanczos

@ Automatic time step adaptation — no Courant condition

@ Lanczos reduction hardly provides any speedup compared with
FDTD

@ Both are polynomial field approximations

e Lanczos: field is approximated by a Lanczos polynomial in A
o FDTD: field is approximated by a Fibonacci polynomial in A

12



PML

PML

No outward wave propagation has been included yet
Implementation via Perfectly Matched Layers (PML)

Coordinate stretching (Laplace domain)
O+ X5 "0k k=x,y,z

Stretching function

Xk(k, S) = ak(k) =+

Br(k)
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PML

PML

@ Stretched first-order system
[D(s) + S + sM|F = —iv(s)Q
@ Direct spatial discretization
[D(s) + S + sM]f = —iw(s)q

@ Leads to nonlinear eigenproblems for spatial dimensions > 1

14



PML

PML

Linearization of the PML

Spatial finite-difference discretization using complex PML step
sizes

(Dcs +S+ SM) fes = _W(S)q

System matrix
Ais = M (D + S)

V. Druskin and R. F. Remis, "A Krylov stability-corrected coordinate stretching method to simulate wave
propagation in unbounded domains,” SIAM J. Sci. Comput., Vol. 35, 2013, pp. B376 — B400.

V. Druskin, S. Gittel, and L. Knizhnerman, “Near-optimal perfectly matched layers for indefinite
Helmholtz problems,” SIAM Rev. 58-1 (2016), pp. 90 — 116.
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Basic equations & symmetry
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PML

@ Spectrum of the system matrix Acs

Im(\)

Re(A)

Lossless resonator



Basic equations & symmetry

Polynomial Krylov reduction 1

PML

Polynomial Krylov Reduction 2

Extended Krylov Reduction
(Preconditioned) rational Krylov methods

PML

@ Eigenvalues move into the complex plane

Re(A)

Complex scaling

=] = = = E DA



Basic equations & symmetry

Polynomial Krylov reduction 1

PML

Polynomial Krylov Reduction 2

Extended Krylov Reduction
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PML

@ Stable part of the spectrum

Im(A)

OB -
OO0 0e

Re(A)

PP
VOO0 0©

Stable part

] (w1 =
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PML

Basic equations & symmetry

Polynomial Krylov reduction 1

PML

Polynomial Krylov Reduction 2

Extended Krylov Reduction
(Preconditioned) rational Krylov methods

@ Stability correction

Im(A)
o
o
o
o
o
Re(A) +
o
9]
o
o
[9)
Stable part




PML

PML

@ Time-domain stability-corrected wave function

f(t) = —w(t) * 2n(t)Re[n(Acs) exp(—Acst)q]

@ Complex Heaviside unit step function

_J1 Re(z)>0
n(z) = {0 Re(z) < 0

20



PML

PML

e Frequency-domain stability-corrected wave function
F(s) = —W(s)[r(Acs, ) + r(Acs, 5)] g
with

n(z)
zZ+s

r(z,s) =

o Note that 7(5) = f(s) and the stability-corrected wave
function is a nonentire function of the system matrix Ac

21



Basic equations & symmetry

Polynomial Krylov reduction 1
Polynomial Krylov Reduction 2

Extended Krylov Reduction
(Preconditioned) rational Krylov methods

PML

@ Symmetry relations are preserved
@ With a step size matrix W that has complex entries

@ These entries correspond to PML locations
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Polynomial Krylov Reduction 2

Polynomial Krylov Reduction

@ Stability-corrected wave function cannot be computed by
FDTD

@ SLDM field approximations via modified Lanczos algorithm

@ Reduced-order model

fm(t) = —w(t) * 2| M~ qln(t)Re [Vini)(Hm) exp(—Hmt)e1]

23



(Preconditioned) rational Krylov methods

Polynomial Krylov Reduction 2

Polynomial Krylov reduction 1
Extended Krylov Reduction

Basic equations & symmetry
PML

Polynomial Krylov Reduction

300

o m

24
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Time [s]
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Basic equations & symmetry

Polynomial Krylov reduction 1

PML

Polynomial Krylov Reduction 2

Extended Krylov Reduction
(Preconditioned) rational Krylov methods

Polynomial Krylov Reduction

e m=400

Electric Field Strength [V/m]




Basic equations & symmetry

Polynomial Krylov reduction 1

PML

Polynomial Krylov Reduction 2

Extended Krylov Reduction
(Preconditioned) rational Krylov methods

Polynomial Krylov Reduction

e m =500

Electric Field Strength [V/m]

0 02 04 06 08 1 12 14 16 18
Time [s]
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Extended Krylov Reduction

Extended Krylov reduction

Stability-corrected wave function is approximated by a
Lanczos polynomial in Acs

The wave function is a nonentire function of the system matrix

Idea: approximate the stability-corrected function by a
Laurent polynomial

Perhaps an even better idea: approximate the
stability-corrected wave function by rational functions
(more on this later)

27



Extended Krylov Reduction

Extended Krylov reduction

o Extended Krylov subspace
Km1,m2 = Span{A_m1+1q, ey A_lq, q,Aq, ..., Amz—lq}

@ Elements from this space: Laurent polynomials in matrix A
acting on the source vector q

28



Extended Krylov Reduction

Extended Krylov reduction

@ Original extended Krylov method of Druskin and
Knizhnerman generates the sequence of subspaces

Kml,l C Kml,Z C...C K,—,,Lm2

via short-term recurrence relations
@ A more general approach was proposed by Jagels and Reichel
o Efficiently generate the sequence of subspaces

Kiir1 CKopjr1 C ... C Kykipr

again via short term recurrence relations
@ / is an integer

# matvec with A = i - # matvec with A~}

20



Basic equations & symmetry

Polynomial Krylov reduction 1

PML

Polynomial Krylov Reduction 2

Extended Krylov Reduction
(Preconditioned) rational Krylov methods

Extended Krylov reduction

e SEG Salt model/velocity profile — 3D acoustics,
frequency-domain, order ~ 93 million

2000 2000 6000 8000 10000 12000

o ) = E =

12N Ge



Basic equations & symmetry

Polynomial Krylov reduction 1

PML

Polynomial Krylov Reduction 2

Extended Krylov Reduction
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Extended Krylov reduction

o SEG Salt model - generalized EKS implementation
Frequency range 2.5Hz to 7.5Hz
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Basic equations & symmetry

Polynomial Krylov reduction 1

PML

Polynomial Krylov Reduction 2

Extended Krylov Reduction
(Preconditioned) rational Krylov methods

Extended Krylov reduction

o SEG Salt model - generalized EKS implementation
Frequency range 1Hz to 7.5Hz
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Extended Krylov reduction

Basic equations & symmetry

Polynomial Krylov reduction 1

PML

Polynomial Krylov Reduction 2

Extended Krylov Reduction
(Preconditioned) rational Krylov methods

o SEG Salt model - generalized EKS implementation

Frequency range 0.5Hz to 7.5Hz
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Basic equations & symmetry

Polynomial Krylov reduction 1

PML

Polynomial Krylov Reduction 2

Extended Krylov Reduction
(Preconditioned) rational Krylov methods

Extended Krylov reduction

o SEG Salt model - generalized EKS implementation
Frequency range 0.1Hz to 7.5Hz
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(Preconditioned) rational Krylov methods

Rational Krylov reduction

@ In a rational Krylov method, we approximate the field by the
span of snapshots

F(s1), F(s2), .o, F(sm)

for different frequencies s;, i =1,2,...,m

@ The snapshots are obtained by solving discretized wavefield
systems of the form

[D(si) + siM] F(si) = —q
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(Preconditioned) rational Krylov methods

Rational Krylov reduction

@ No PML linearization is necessary!

@ When using a rational Krylov method, we deal with the above
system directly and not with the stability-corrected
system/wave function

26



(Preconditioned) rational Krylov methods

Rational Krylov reduction

@ Return to the system
[D(s) +sM]f = —q
@ Symmetry relation
DT (s)W(s) = W(s)D(s)

o W(s) = W(s)d~ is a nonsingular diagonal s-dependent step
size matrix

7



Basic equations & symmetry

Polynomial Krylov reduction 1

PML

Polynomial Krylov Reduction 2

Extended Krylov Reduction
(Preconditioned) rational Krylov methods

Rational Krylov approximations

e Multiply by W to obtain
As)f(s) = §
@ System matrix
A(s) = W(s)[D(s) + sM]
@ Properties

AT(s)=A(s) and A*(s) = A(s")

28



(Preconditioned) rational Krylov methods

Rational Krylov approximations

Solve system for m > 1 different frequencies

Construct the subspace
Km = span{#(s1), f(s2), ... f(sm)}

and take
IC,S, = span{Re K, ImKpy}

as an expansion and projection space
Note that

f(s)e KR and f(sf)ekR i=1,2,..,m

20



(Preconditioned) rational Krylov methods

Rational Krylov approximations

Let V,, be a basis matrix of L}

Field approximation

fm(s) = Vinam(s)

Expansion coeffcients are determined from Galerkin condition

Structure-preserving reduced-order model

Fn(s) = VR (5)VTG  Rm(s) = VI A(S)Vim

20



Basic equations & symmetry

Polynomial Krylov reduction 1

PML

Polynomial Krylov Reduction 2

Extended Krylov Reduction
(Preconditioned) rational Krylov methods

Rational Krylov approximations

@ Interpolation properties

A A

@ For coinciding source/receiver pairs

%"T?m(s) = i) =12,

d s=s;,s}’ ds s=sj,s;’

n(si) = f(s;)) and  Fn(s)) = F(s?) i=1,2,..

41



(Preconditioned) rational Krylov methods

Rational Krylov approximations

@ Large travel times: frequency-domain wavefield highly
oscillatory in frequency domain

e Rational Krylov method requires many sampling/interpolation
points

@ Phase-preconditioned rational Krylov method: factor out the
strongly oscillating part using high-frequency asymptotics

@ Much more on this in talk of J. Zimmerling
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(Preconditioned) rational Krylov methods

Literature
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Literature
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Literature

@ Phase-preconditioned rational Krylov method
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